LANGUAGE PROBLEMS
IN MATHEMATICS

number of events in science, particularly significant for its des-
tiny, have brought again the problems of mathematical language to the fore-
ground.

Some of these problems, listed according to their historical order — they
are quite recent, actually — are: the theory of relativity and quanta; the con-
flict between Brouwer’s intuitionism and Hilbert’s theory of the demonstra-
tion; the mathematical valorization of the axiomatic associated to the bloom-
ing of the Erlangen Program; the systematic construction of logical algebrae;
the logical empiricism of the Vienna School with Carnap’s logic syntax and
the attempt at creating a unique science; the theory of the geometrical object;
the elaboration of a theory of structures and, finally, the deepening of the
notion of “chain” — such as it has been created by the calculus of probabili-
ties.

In each of these theories, the problem of language imposes itself as an
essential issue, thus re-actualizing the great illusion of a total science, com-



pletely mathematized, to which Leibniz had intended to dedicate the years of
quietness and retreat that actually never came.

There is no wider spread belief in the identity of science itself, as an orga-
nized system of knowledge, with its form of expression and proper language,
as in mathematics.

We will make the difference between language, expression and, in a cer-
tain sense, history and knowledge, as content of science, only by consider-
ing the historic evolution of mathematical doctrines — from geometry to the
theory of numbers and of sets — by noticing the endeavor at mathematizing
the different fields of physics, by including the scientists’ personal experi-
ence and considering their individual work not just as a mere circle in the
development of science, but as a complete fact, organically existent in itself.

We will never succeed in dismantling the unity of science into form and
content, each of them independent, and the whole history of science, the old
one, as well as the more recent, which we are going to question in this work,
shows that this unity can not be reduced to form, as neither can it be reduced
to pure knowledge, form and language being just a mere epi-phenomenon.

Yet, we will notice that in some moments of science the nominalist temp-
tation is looking for its way.

The history of logic, with Hilbert’s latest experiments, or the ones with an
encyclopedic character, carried out by the Vienna group, has always been
trying, using many skills and immense resources, to reduce mathematics, and
thus the entire science, to a logic formal system, existing closed in itself,
conditioning its real existence outside real human experience.

Relativity has also tried, apparently in a more limited way (but how suc-
cessfully at the moment!), to mathematize physics, by creating a geometri-
cal model, equivalent to it.

If these attempts had been successful, the image of science would have
been unexpectedly poor today: a universal physical science, identical to a
mathematical doctrine, and essentially reduced to a system of signs and a
few principles. The entire knowledge, with all its virtues, could have been
reduced to less than one page.

But we will see, after a short examination of the various attempts, that the
history of science, like that of any human act, can not be condensed into
pills; that science keeps on living through the vivid work of its creators and
that we grasp it in the first place through the language, that gave expression
to the scientific thought in all the past experience.

Let’s start with relativity.

In its restricted form, it appeared in a particularly critical moment for
physics.

Maxwell’s theory of the electromagnetic phenomena had reached a form
that gave full satisfaction in the study of electron dynamics, light phenome-
na, and electromagnetic phenomena related to bodies at rest. But all the
attempts at modifying this theory and adapt it to moving bodies gave no sat-



isfaction. The very simple problem of theoretically studying the influence
which translation, the Earth’s for instance, exerted upon electrical or optical
phenomena, could not get an answer in accordance with experience.

The language of Maxwell’s theory proved fundamentally different from
that of Newton’s mechanics. Each of these theories included the notions of
time, space, speed, mass, energy, but with different meanings. As long as
physicists did not realize this discrepancy, thinking that the same words were
covering the same magnitudes, the merging of these theories in phenomena
that had a mixed character, material and electric at the same time, lead only
to contradictions and chaos.

The Dutch physicist Lorentz was the first to realize this position of the
two doctrines and has tried, in a conservative spirit, to translate into
Newton’s language what length, time and mass were in the language of elec-
tron dynamics.

In spite of having proved inefficient, this cognitive effort lead to the ten-
parameter group of transformations (Lorentz) that makes invariant
Maxwell’s equations as well as the distance in the universe

do? = dx? + dy? + dz2 — c2de.

If Lorentz had known the geometry of his time, dominated by Poincaré,
Klein and by the Erlangen Program, he would have understood that his dis-
covery was the equivalent of a quasi-Euclidean geometry, of a four-dimen-
sional world, associated to Maxwell’s theory.

One year later, it was Einstein who understood the real character of
Leibnitz’s discovery and proclaimed the mechanical unity of the world,
including the mechanics of matter into that of the electron. In order to do
that, we had to unify the language, to assign the time, space and mass of the
mechanics of matter exactly the meaning they acquired in the dynamics of
the electron, interpreted according to the new standpoint we have mentioned.

They reached thus a coherent physical theory for the electromagnetic phe-
nomena of moving bodies.

Obviously, we will still use in mechanics the old Newtonian language, as
long as the speeds we are dealing with are at the scale of our everyday expe-
rience. We will be using it in the limits of current experience, as people use
the dialect of their childhood for the limited use of family and domestic life.

But beyond these borders, we are compelled to use the space and time of
the electron, we are obliged to use a mathematical language that asks for
overwhelming rights in building a physical theory. Time, space, material
mass, energy, measured within a determined experiment, have only a local
and momentary value, associated to the experimenter and the moment the
experiment has been carried out. In order to give these experimental results
a scientific explanation, we have to sef them into mathematical formulae in
which time, space, mass and energy regain their entire richness of possibili-
ties, depriving thus the experiment of what it had particular and local in it,



giving it an expression intelligible for any observer, whenever and in what-
ever conditions, compatible with Lorentz’s transforms.

This is an example of how the function of mathematical language was
turned into account in physics.

The geometry associated to physical universe was characterized by the
Lorentz group, which, in its turn, corresponds to the calculation law for the
distance between two points:
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Generalized relativity has extended this geometrical vision of the uni-
verse, noticing that the presence of a material mass modifies the trajectory of
the light ray, therefore the conditions in which the measurements are to be
made, and finally the very form that expresses the distance between two
points.

In this way, Einstein — by including gravitation in physics — found him-
self compelled to admit that the representative variety of the space-time uni-
verse imposes a calculation rule for the distances between infinitely close
points, similar to Riemann’s form:

ds? = g, dxidxk.

This computing rule varies from point to point, according to the distribu-
tion of matter in the universe.

In this image, the universe stops to be linear. It is curved, with irregular
sinuosities in four dimensions.

It seemed that this time gravitation physics had been entirely structured
on geometry, as it had happened with optics. The notion of “four dimension-
al surface” did serve this target. Einstein’s equations offered the possibility
of computing its fundamental tensor g, .

Our hasty intuition thought that from now on, the universe of physics
could be studied by a good mathematician on a four dimensional map of
Einstein’s geometrical universe, with the help of a dictionary meant to trans-
late into physical terms the elements, the lines, the surfaces, their most
important properties. What would be significant in geometry and, obviously,
independent from the network of coordinates we adopted, would be also sig-
nificant in physics.

The experimental achievement of a physical object corresponds to a range
of operations that lead to the respective geometrical object.

The very correspondence between the two categories of objects is inde-
pendent on the experimental process, as well as the correlative mathematical
scheme. The language of physics is in this conception isomorphic to the geo-
metrical one. In fact, the language of mathematics is not more abstract than
that of physics, since the dictionary does not create abstractions.

This turn towards geometry, that revolted many experimental physicists,
but which they seemed to be obliged to accept as the unique coherent form
and universally valid, the only language in which they could scientifically
express their findings, represents an invasion of physics by dominating




mathematics. But, in the same time, it is a penetration of a physical stand-
point into geometry, of an overwhelming importance for the latter.

For it is only under the influence of this constraint of including and there-
fore of serving physics, that geometry has cleared up its own existence.

Before 1916, when Einstein’s memoir on the bases of general relativity
appeared, the idea of “geometrical variety” was very restricted and almost
connected with our immediate intuition. A two dimensional variety meant a
surface, a piece of fabric, with an as complicated shape as it could be.

The very notion of “nonholonomous surface” imposed by mechanics,
upon which the Romanian mathematician Gh. Vrinceanu wrote valuable
works later, was kept aside, like a simple curiosity. Other varieties were sim-
ply out of question.

That is why, both physicists and geometricians thought in the beginning
that the four dimensional geometrical variety, defined by the equations of
relativity, was, according to the intuitive model, a common, four dimension-
al surface.

In reality, physics was interested only in those aspects of the variety that
resulted from the knowledge of the rule for measuring distances, i.e. the fun-
damental metric tensor g, or in what was later called * the metric geometry
of space”. But a surface as well as a space — having any number of dimen-
sions according to that model — also has other properties than the metrical
ones; it has projective or other properties. They do not correspond to any-
thing in the physical universe, at least, according to the theory of relativity.

The identification of the universe with a geometric space is therefore
impossible under these conditions; the geometric system of notions associat-
ed to such a space is much more complex than that of physics. A dictionary
meant to translate from one language into another and thus to rationalize
physics was not possible, because geometry itself was a non-rationalized
complex.

It was only after 1917, when Italian mathematician Levi-Civita created
the notion of “parallelism” (thus introducing a rule of propagation or trans-
port into a Riemannean variety, which was later on called a “connection”)
that the proper notion of “Riemannean variety” was elaborated. Giving up
the intuitive idea of surface, the Riemannean variety was conceived only
with the elements and properties deriving from the connection we are defin-
ing, the metrical one, in the case considered by relativity.
~ Such a variety (that has so little to do — as it was axiomatically defined by
E. Cartan — with the old notion of surface) was, indeed, able to constitute a
model of the physical world, and the axiomatic language of that geometry
would have fully answered the aspirations of the physicists, if they had not
changed in the meantime and if the progress achieved by geometry had not
modified, from a different standpoint, the relations between geometry and
physics. Because, while the notion of Riemannean variety was being cleared
up, a new light was falling on the rich complex of geometrical possibilities



that used to be confusedly mixed on the same surface. Other geometries,
other connections have been created by mathematicians, one of the most out-
standing of them being, undoubtedly, the French E. Cartan.

The physicist no longer found himself, as it had happened with Einstein
in the beginning, in front of a single geometrical model, his only job being
to interpret or to translate within this unique model, its physical phenomena.

He had to choose among the different models, the one that suited him best
and to justify his choice.

In the meantime, Einstein’s first option had proved not valid, particularly
as it did not geometrically include electricity.

In search of able to express the physical unity of the world (gravitation —
electricity), Weyl, Eddington, Einstein resort to more flexible geometrical
varieties than Riemann’s primitive one. But, finally, the results did not prove
satisfactory and neither did more favorable perspectives open towards
achieving a unitary model.

The problem stays open, nevertheless.

If we content ourselves with less, the principle of the geometric model is
still valid:

1) a field without matter can be the seat of electromagnetic phenomena;

2) a material field can exist without electricity.

At any rate, a geometric model such as a Riemannean variety, has a local
signification. The tensor g, determined in a certain region, no matter how
good the approximation of measurements would be, can not be prolonged
too far and, what is worse, neither can we know how far our prolongation
may be valid, if it is not made according to an effective experimental inves-
tigation.

Any topologic conclusion on the shape or size of the universe, as deduced
from local evaluations on this tensor, whether would be deprived of any real
support.

All we have to do is think that the metric of the cylinder, cone and plane
are exactly the same, and if our physical world had two dimensions, we
could not have any possibility to recognize to what extent

PHYSICS = THE RESPECTIVE GEOMETRIC MODEL

If we belong to a plane, a cylinder or a cone. Some experiments of physics
would be necessary to inform us on this.

That is why I think that all the evaluations made by numberless
astronomers and physicists on the universe in its entireness, starting from the
principle of the model, have a feeble basis, for, we can not speak today, in
geometry, about such a model in its entireness, but only locally, with the
exception of the Euclidean one.

Whatever may be in future the fate of this principle of the model, one
thing is certain: its choice out of the multitude of possible models is not
imposed by simple logical, necessary criteria, immanent to it or the corre-
sponding physical world.




This choice has been done according to extra-geometrical criteria; it
comes from the conveniences of our spirit with respect to physical experi-
ence, thus taking us out of the field of language problems, and placing us
again within the framework of the experiment and concretely showing us
that, however large a language may be, it cannot represent science as such.

The nominative assault aiming at turning science into a pure system of
signs, into a logical, pure language, can be considered this time as well, a
failure.

The reaction of physical sciences was unexpectedly violent. The new
physics is characterized by a manifest anti-nominative tendency. The double
aspect, corpuscular and undulatory, whose quantic phenomenon is not just
a convention, but — according to De Broglie and Bohr — a necessary form of
science.

This double aspect, interpreted by the notions of our classical, macro-
scopic physics, leads to contradictory descriptions.

But nobody is thinking today to leave or alter, for this reason, the notions
of this physics, whose edification is related to the entire current human expe-
rience. And neither does it seem likely that we could abandon these notions,
for any experience, however subtle, however deep into the most delicate
phenomena, is recorded on apparata built up by our hands and whose indi-
cations can be read by our eyes. :

Therefore, our only way of penetrating the field of this microscopic
physics is to establish a correspondence between its phenomena and the
recordings of our apparata, finally translated into notions belonging to clas-
sical physics.

The experimental modalities, focussed on the corpuscular aspect of a phe-
nomenon, lead us to an interpretation that is contradictory, by the very
notions that are being used, to the experimental modalities that are approach-
ing the undulatory aspect of the same phenomenon. But that does not mean
that an object is at the same time corpuscle and wave, it only means that
these two intuitive notions fit only partially the object they refer to, and that
none of the descriptions is complete, and finally, that both are necessary for
its understanding.

We have here an aspect of what Bohr called complementarity. Corpuscle
and wave are therefore complementary, but not contradictory, for nobody
identifies them with the object, they being only applied in a partial descrip-
tion of the object.

The position of a microscopic object and the quantity of movement, here
are other two complementary macroscopic notions. That is why
Heisenberg’s relations of undetermination have to be understood as estab-
lishing this fact of complementarity: if we determine one of these magni-
tudes, the other one ceases having a determined value.

Once surpassed a certain level of magnitude of elements, level established
by Plank’s constant, complementarity ceases to function: notions will then



valorize their absolute right in the language of physics, resuming their intu-
1tive use.

To summarize, the new physics uses in order to describe microscopic phe-
nomena: a language, i.e. that of classical physics, a principle of correspon-
dence between the microscopic phenomena on the one hand, and the notions
and relations of this language, on the other hand, and finally, the principle of
complementarity, that determines the use of the precedent one, taking each
time into account the concrete form of the experiment we are making.

The enchainment of these principles deprives language of any absolute
signification, but preserves its necessary unity for a good understanding
among people, by taking refuge on the solid ground of macroscopic physics.

The process of expression of the quantum physics did not stop here: it
also looked for another unity, on an abstract, mathematical level, which we
are particularly interested in. So much the more, as its achievement was
accomplished according to principles totally different from those used by rel-
ativist physics.

Relativity aimed at building a geometrical model, isomorphic to physics.
The mathematical schemata of the model have a direct and concrete sense.

In the new physics, we meet nothing but abstract mathematical schemata,
that have no concrete interpretation in themselves. Such an interpretation is
only possible if we specify the manner of experimenting. It is only then that
the scheme comes to life and makes work a correspondence between math-
ematical objects and physical objects.

I will only add that in this theory, statistics has a fundamental role, con-
nected with the fact that the magnitudes are not considered as values in them-
selves, but — essentially — as results of an experimental process.

That is why we have included the particular schemata of this physics into
the scheme of a more general nature constituted of what we, and our collab-
orator, Gh. Mihoc called a “chain with complete links” and which represents
a rule of propagation for a statistical structure:

M
().

The scheme represented by an operator is in itself a structure, the essen-
tial expression of the phenomenon that leads to the achievement of the phys-
ical object.

The identity between the object and the structure of the physical phe-
nomenon that leads to the achievement of the object is a postulate of the
quantic physics. It is true, it acquires a value especially through the mathe-
matical schematism, in which the object and the operating process are equal-
ly represented by the operator, but that does not prevent it from being one of
its necessary forms.

By resuming an old tradition, physics has found the most adequate lan-
guage for the quantic phenomena, within the differential processes of the
analysis.




Therefore, we will have to take a closer look at the characteristics of this
language and its value.

But first, we will briefly show how an investigation on the validity of geo-
metrical doctrines leads us to the same sources: analysis with its numeric ele-
ments, and its finite or infinite processes.

The original form, the classical model of any geometry is Euclid’s. A sys-
tem of definitions and conventional postulates appreciates, as everybody
knows, its notions, and a system of axioms institutes its fundamental rela-
tions. These basic elements, definitions, postulates, axioms are structurally
valorized through what we call the Euclidean group of plane transforma-
tions.

That is why we can define as objects of this geometry all the forms and
invariant relations with respect to the group. So, this is what structurally
characterizes the whole geometry.

Inspired by this model, F. Klein conditioned any doctrine constituted as
geometry on the following program: a number of facts of the doctrine being
given, we determine the amplest group of transformations compatible with
them; once the group determined, the doctrine re-systematizes itself accord-
ing to it, into a real geometry.

Under the influence of these ideas, the non-Euclidean geometries have
acquired a final form, joining the respective group of transformations.

E. Cartan’s discovery of the group of a Riemannean variety gave a new
life to the Erlangen Program, including it into a larger program of a total
axiomatization of geometries, which leads to their differentiation into pure
disciplines. We are particularly interested in this aspect, as they constitute as
many differentiated and structurally different forms of language.

In this way, alongside with the already classical metric geometry, there
appeared different projective geometries, whose axioms were given in the
works of mathematicians among which, besides Cartan and Veblen, we have
to name Barbilian. In the process of constituting a pure geometry, one most
important aspect is the criterion that ensures its authenticity, therefore the
existence of a model satisfying the system of axioms under consideration
and its uniqueness — if we do not consider as different all those isomorphic
ones.

This criterion consists in the possibility of establishing a numeric inter-
pretation of the elements of geometry, such as they form a body (or a ring)
and generate an analytical geometry. We therefore transpose, as Descartes
did for Euclid’s geometry, any pure geometry into the analytical geometry of
a body of numbers. The cohesion of this geometry and the analytical game
of the functions, equalities and equations, guarantee the cohesion and the
logic value of the language of that particular geometry.

For some mathematicians openly, for others, more numerous ones —
secretly — it is not only the logical problem of the respective geometry, but
also the very doctrine of geometry that have completely been cleared up,



exhausted. Except for some technical difficulties, we can state that only
when the proper analytical geometry has been established, the whole geom-
etry is given.

But as these difficulties are not essential, this position would necessarily
lead to the following conclusions: once the axioms given and the analytical
geometry constituted, we can build a machine to perform the operations that
are characteristic to this science. We would introduce in it the fundamental
elements as input data and the machine would perform all by itself, auto-
matically, all the line of relations and theorems that constitute the respective
geometry. An axiomatic geometry would therefore be — according to this
conception — a machine. And since at the level we are today in the field of
computer techniques, the problem seems not to show any effective difficul-
ty, we might think that we are close to the moment when we are going to
leave the task of building and even writing geometries to computers.

This is in fact the unavoidable consequence of the logistic standpoint,
either under the form Hilbert gave it, or particularly under that given by the
Vienna School.

So, in the science of numbers, we have to seek for the trustworthiness of
mathematics, the trustworthiness of all its operations, the guarantee that the
notions we are dealing with stay pure and identical to themselves along any
operation, which is the condition of good functioning for any language, even
the non-mathematical one.

This guarantee is obtained — Hilbert used to say — by setting mathematics
on solid grounds.

This time, we are no longer talking about systematizing bodies of a spe-
cial doctrine, but about turning the whole of number science into an axiomat-
ic one, so that besides axioms, postulates and definitions, science can be con-
stituted through the purely formal processes of deductive logic.

Logistics, with Frege, Peano, Russel, Whitehead, Couturat, Wittgenstein
had aimed at reaching this ambitious project, demolished by the appearance
of a few paradoxes.

Zermelo had tried, following Cantor, an axiomatic of the number sets, but
the strange form of his axioms was not met by mathematicians with sympa-
thy. They admit any theory, on the sole condition that axioms should have a
clear, precise sense, and lead to a direct and complete spiritual acknow-
ledgement.

The axiom of the choice in particular, introduced by Zermello, raises fun-
damental objections that divide mathematicians into two decisively opposed
groups. The axiom has the following content: a set of elements being given,
it is always possible for us to find a procedure through which we can make
one determined element correspond to it (and this, whatever the considered
set might be, thereby belonging to another, more comprehensively deter-
mined set).




The doubtful character of the axiom of the choice comes firstly from the
fact that it harms the existence, necessarily attached to the definition of the
set. By applying it to the main problem of our present preoccupations, name-
ly establishing a language that should more closely correspond to physics,
we would find in the very definition that includes all eventual languages, the
elements of our choice to make.

This would suppose, as it can be noticed, that we have solved, by purely
logical means the very problem of the existence of the language we had been
searching for.

The nominalist function of this axiom is obvious and hence the danger of
its use in the logic organization of a mathematical language.

Yet, it is true that we can give definitions that may include a principle of
choice. But in this case we are not dealing with a descriptive logical defini-
tion, but a constructive one, showing how each particular element is
obtained. 1t is for these sets that Zermelo’s axiom is implied, but in reality it
no longer has the function of an axiom proper.

For the descriptively defined sets, the axiom of the choice has to be taken
to pieces, isolating particularly the one referring to the postulation of exis-
tence and leaving it aside. But, with this, the axiom ceases having the value
it has been primarily assigned. ,

Without this postulate, Zermelo’s logic system falls.

Another one tried to take its place: the system created by Hilbert under the
name of “theory of the demonstration”, aiming at building some mathemat-
ics reduced to pure demonstration.

Here are Hilbert’s words at the Bologna Conference (1926), showing the
necessity of founding a really trustworthy mathematics: “a satisfying solu-
tion to the problem of basics is not possible with these axiomatic procedures
(i.e. the procedures of the Zermelo type).

For the axioms used so far include presuppositions having a content
(Inhalt). If we take as a starting point for the demonstrations axioms having
a content, however plausible they may be, mathematics loses its character of
absolute trustworthiness.

Hilbert’s axioms are purely formal, purely logic and, at least in his inten-
tion, they fit any content that might be included in mathematics.

On the bases of these axioms, Hilbert considers that he has solved the
problem of basics for good, as any mathematical or mathematical-philo-
sophical affirmation is reduced to a precise formula, true or false, which can
be rigorously established in theory.

The same ideas are expressed, maybe more concretely, and with such a
pure passion, by Herbrand: “the role of mathematics is probably just to fur-
nish reasonings and forms and not to search for the ones to be applied to a
certain object’.

As the mathematician studying the equation of wave propagation is not
supposed to ask himself whether in nature waves do satisfy these equations,
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similarly, when studying the theory of sets or arithmetic, he should not won-
der if the sets or numbers he is intuitively considering verify the hypotheses
of the theory under consideration.

The theory of the demonstration leads directly to a pure machine that cre-
ates out of nothing, by means of simple conventions, theorems, relationships,
magnitudes of different orders, equations and integrals|.

This very same machine could furnish geometry the systems of axioms,
so the axiomatic geometric doctrines, benefiting this time from an absolute
trustworthiness, needing no further guarantee.

The valorization of the formal axioms of the theory was attempted at by
Hilbert and his disciples when demonstrating the following principles,
whose brief examination is necessary to our exposé: Zermelo’s principle, ter-
tium non datur (the principle of the excluded middle), the complete induction.

The demonstration of Zermelo’s principle, even for the limited cases
Hilbert talks about, shows that, in reality, Hilbert’s axioms implicitly include
a presupposition of existence that can not be demonstrated.

Therefore, this presupposition could not be eliminated from the system of
axioms, as their author had wanted to, (and with such a brave pride!). That
is why, Hilbert’s theory is not a pure theory of the demonstration. It too has
to be included in the logistic neo-Platonism of the Vienna School.

The simplest condition for which the principle of the excluded middle has
been demonstrated by Herbert is the following: if a sentence is not true for
all integer numbers, there is a number for which it is true.

Kronecker had noticed that we are not entitled to define as irreducible a
polynomial in x with integer coefficients, if there is no decomposition of the
polynomial into another two similar ones.

Hilbert demonstrates “that this definition is perfectly rigorous, so that
Krockner’s affirmation is not only logically unfit, but also arithmetically
inexact”.

[ am not going to resume the examination of such a demonstration, since
this is not the aim of my paper, which is only interested in the critical
moments of the problems of language and tries to find out how it got over
them.

This criticism, in which Weyl used a few weapons, has been vigorously
lead by the Dutch mathematician Brouwer, who has undoubtedly shown that
there is a category of propositions, non-contradictory with respect to notori-
ous sentences, about which we can neither say they are true — as Hilbert’s
scientific logic requires — nor that they are false.

A particularly interesting form of these considerations is the one related
to the fact that between a proposition referring to the entireness, when it
comes to an infinite set, and a sentence referring to the individual elements
of the entireness, there is a game that has to be either verified by experiment,
or filled with the help of a demonstration that can not have — once and for




all — the universal character of Hilbert’s demonstrations, but a particular one,
referring to each determined set.

This error of considering that there is no free space for propositions
between the entireness and the component parts does not belong to the pure-
ly mathematical language only. It is a current error in many sciences, such as
the economic ones, or more generally, statistical ones, that use a less rigor-
ous mathematical language and therefore generating logical errors more
often than one might expect.

Neither Hilbert and nor his disciples actually did succeed in giving a gen-
eral demonstration of the principle of the excluded middle. If this had hap-
pened, it could not have acquired any other signification than that of show-
ing that the theory of the demonstration essentially contained the same lack
of creative power as the principle we are dealing with.

Finally, Hilbert also tried to demonstrate the principle of complete induction.

Poincaré’s bright analyses, resumed later by Hadamard, with a particular
profoundness, showed that complete induction is a kind of original reason-
ing, which, whenever applied, really opens a road for creation in mathemat-
ics, being impossible to demonstrate it as a general affirmation, starting from
axioms of the Hilbert type, if these axioms or the demonstration procedure
may not even imply it.

Brouwer gave this principle a large extension, turning it into a real motor
of any procedure of mathematical demonstration. Brouwer’s intuitionism is
based, in the good old Kantian tradition, on the creative role played by time
in the mechanism of complete induction that is accomplished in time.
Mathematical reasoning is, according to this doctrine, a creative march, end-
lessly developing perspectives that had not existed before their appearance
to our spirit, and that have never been exhausted or closed.

Brouwer opposes to tautological mathematics, to logistic, or to the theory
of the demonstration, the constructed mathematical disciplines, admitting
within their framework only the propositions that are included through the
direct constructive process.

Brouwer opposes the conception of mathematics as a simple language,
created by the different nominal creations, a more modest sort of mathemat-
ics, made up of notions and propositions acquired in science by continuous
creation, by the effective effort of the human mind. Each of these sentences
carries a name, a sign, the seal of authenticity, which gives it a really human
value.

Through this reaction, so violent by the rigor of its framework, that
excludes any usage of the principle of the excluded middle, Brouwer’s intu-
itionism places itself near the idealism, actually muh larger, that character-
ized most of the contemporary mathematicians, from Borel, to Lebesgue and
Cartan.

Very close to Brouwer, Borel considers that the only notions, the only def-
initions that are effectively implied in mathematics are those resulting from
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a constructive process. As opposed to him, Lebesgue — the first mathemati-
cian to have introduced and valorized the axiomatic method in analysis, by
defining the integral bearing his name — can not be included among the nom-
inalists, because of the powerful geometric spirit governing his work.

For similar reasons, the Romanian mathematician D. Pompeiu, a posi-
tivist like Mach, is still closer to Poincaré, in the great idealist tradition of the
19th century mathematics, which includes — with differences of shades,
expressive forms or means of reasoning, more analytic or more synthetic —
all the great German mathematicians, as resulting from Bieberbach’s famous
article.

Resuming the eruption forms of logistics, we will naturally find Vienna as
their great center.

The Vienna school has built the most systematic neo-Platonic doctrine.
Resuming Bolzano’s tradition (for whom the existence of mathematical
propositions was established at the moment of their non-contradiction) on
the one hand, and that of the logistic, through Wittgenstein’s Tractatus logi-
co-philosophicus (1922) on the other hand, the thinkers that constituted this
“school” adopted a decidedly formal but at the same time realist position
towards science, by excluding intuition and time from the knowledge of the
world. The manifesto of this school says:

“Scientific description can only include the structure of objects (their for-
mal ordering) and not their essence. There are the structure formulae that
Join people through language; it is in them that the content of common
knowledge is manifested. The subjectively lived qualities as such (red, joy)
are nothing but lived acts; they are not knowledge. That is why, physical
optics will include nothing but what even a blind man could understand in
principle”.

“Any act of knowledge is knowledge through its form; form translates the
behavior that one is being aware of”” (M. Schlick).

In this sense, any science — particularly mathematics — is a language. The
latter, in particular, is a tautological language, and it is only the limits of our
spirit — as another Viennese Fraenckel says — that prevent us from accepting
all its propositions at the same time.

In the radical formulation, given by Otto Neurath, to the violently meta-
physical attitude of the “Vienna school”, we regain the position which
Hilbert took with respect to Zermelo’s axiomatic and that of Cantor’s other
direct disciples.

Scientific enunciations (the existing ones or those relative to a piece of
observation or the mathematically-tautological ones) are the only meaning-
ful ones: the propositions that are not included within the framework of sci-
ence, such as those referring to the reality of things or the theory of know-
ledge, have a metaphysical character and are deprived of any sense.

Contrary to other less radical ones, Neurath considers even the protocol-
type enunciations (the taking down of an experience) as well as those on the




propositions of science and which constitute the logical syntax, as belonging
to the mass of scientific enunciations, whose only criterion of truth is logical
coherence. All these propositions, as relative and for ever apt to improve-
ment as they may be, make up together a system, inside of which, we have
to place the order that is necessary for turning it into unitary science — to
which several congresses and publications have been dedicated. This order
had to come through that integral physicalism, clearly originating from
Mach, and it has found an extremely large echo within the world that disliked
metaphysical difficulties.

“Any scientific enunciation, is always reduced through a row of tautolog-
ical enunciations to another, asserting that a certain even took place in a cer-
tain place, therefore to a physical enunciation”.

Any science, be it a natural science or a moral one, even history, can be
expressed in a physical language.

The unity of the language means unitary science, which thereby excludes
any meaningless proposition, and therefore not only any metaphysics, but
also what is most consistent, any philosophy, as this would require some
form of knowledge. -

In closely associating logic on the one hand and empiricism on the other
hand, the Vienna circle set the final bases of the science about the world, by
eliminating all metaphysics, any theory of knowledge, any phenomenology.

In order to achieve this, we need an adequate scientific language, by
applying logical analysis and logic criticism to the actual languages.

By eliminating any trace of metaphysics from the language, all the false
problems and the glotto logical idols, we prepare the way for a complete
merging of logic and experience, thus setting the basis of a new science.

To what extent we can talk about a unique language, by absolutely
observing the rules imposed by critical logic, is a problem which can not find
a conclusive answer today.

Neurath’s idea of resorting in that scope to the current human language
from the primitive societies having a pre-metaphysical thinking is obviously
a joke. Nevertheless, the attempt at giving mathematical analysis a logically
formal structure is a fact, whether it is in the logistic sense, or in Hilbert’s
more pure approach.

The success was, as we have seen, very feeble. One can only speak of
regions of the analysis or the theory of numbers where the theory of the
demonstration or the logistic have brought the light of a purifying criticism.

The reversed operation though, was particularly successful. One can
speak about the mathematization of logic, achieved by logic algebrae, whose
constitution makes obvious and final progress.

[ find it worth mentioning that the success of mathematization implied a
differentiation of the types of logic, as it happened with geometry, so that we
have a number of axiomatic, coherent kinds of logic, real algebrae in their
elements and operations. Among the creators of such doctrines we quote



Romanian mathematician Gr. Moisil, who was able to find in these disci-
plines some models or typical schemes of the scientific reasoning.

A remarkable kind of mathematized logical scheme has been created late-
ly by means of the theory of structures, developed by Ore, Birkhoff and others.

This may seem to point out that the logical process, in its very formal
meaning, is not unique, that mathematics is richer in schemes than any of the
types of logic represented by the algebrae we have been talking about before,
that, any way, the logic level is different from the mathematical one and, for
the time being, we can not talk about a language as a consistent reality, if its
schematism is to be reduced to the purely logical one. This is the way it is in
the science of numbers, it will be much more so in geometry.

We have shown how the system of axioms of a geometry, once estab-
lished its criterion of authenticity, leads us to an analytical geometry.

Looking for the logic certitude of this language, we reach the above-men-
tioned conclusions which, referring to the science of numbers in general,
also include any analytical geometry and, therefore, any geometry. The
geometry-making machine is just an illusion, but an illusion we are not even
sorry for.

In order to build a geometry, once the system of axioms given, and its
coherence and truthfulness checked, we also need something else than the
simple schemes of formal logic. In spite of our good will, no mathematical
doctrine seems to have been simple tautology.

With his deep feeling for the values of geometry, D. Barbilian is the first
to notice, in The Axiomatic Critique of the Fundaments of Projective
Geometry that the definition of the categorical system of a geometry, by
building its analytical geometry, is not sufficient. This act of defining is com-
plete — according to Barbilian — only when we have succeeded in creating,
alongside with the immanent system of algebraic magnitudes, the funda-
mental group of transformations. This is certainly an important step towards
geometric reality, but we have to go even further. Instead of searching for the
guarantee of authenticity in analysis and logic, as axiomatic generally does.
by stopping at some general propositions, on the threshold of science, let us
look, with the help of the fundamental group Barbilian is talking about, for
a principle of correspondence with Euclid’s geometry. Namely, not with the
axiomatic scheme, and not only with its group scheme, but with the whole
doctrine, its propositions, configurations, with the richness of facts and the-
orems it includes. One can not talk only about a simple logical mechanism
that would have produced and selected the notions and theorems that make
up the thesaurus of this geometry. It has been thought by the greatest minds
of many centuries, it has been invented under different circumstances by
whole generations of mathematicians, belonging to all the peoples that col-
laborated to the history of culture.

A keen sense of values makes the geometrician choose, among the differ-
ent properties that are presented to him, the most characteristic one. The per-




sonal inclinations of expressivity make each mathematician formulate in his
own way a theory or even some simple finding.

How many of the theorems discovered along the centuries, are still pre-
served and how many, even if true, were lost — in spite of having the same
value — because of their lacking expressive power, or due to their form of
presentation, so that they had to be later on rediscovered in forms meant to
ensure their life!

This rich thesaurus, which is Euclid’s geometry, is a language indeed,
with all the notions, forms of expression and with their own functions.

A syntax of this language is necessary. Its problems surpass Carnap’s log-
ical syntax, which has to be unique, somehow above the logic, the only form
of philosophy still admitted.

The syntax we are referring to, should embrace those procedures that
make possible, among other things, the correspondence between Euclid’s
geometry, integrally as we conceive it, and any other axiomatic geometry
that is being shaped and given reality to, in accordance with the model of this
century-old discipline.

This syntax will also clear up the positive contribution of relativism in the
particular field of scientific language, where it had the relative proposition
valorized, with respect to the predicative, anthropomorphic, one overused by
physics, mathematics or even geometry, proper in all the forms of expres-
sion — as Bréal was pointing out in his unparalleled volume on semantics.

There is nothing further from the true feeling of the scientist in his con-
tact with science, than the logic automatism which the indefatigable nomi-
nalism of so many circles, along so many generations, has lead us to, under
the pretext of looking for certainty and truth.

Mathematics is not tautological. An axiomatic-making machine could
never build all by itself a geometry or an algebra, as it could not create a liv-
ing being.

Automatism is not the characteristic of science, even if it uses it in frag-
ments or stages of passage, as humans use any mechanism at hand.

The algorithm can be an instrument of mathematics, but never can it be
taken for a way of thinking within it, which many people obviously miss
noticing, thus entangling its ways.

Algorithms are comfortable. They have the concrete, material character in
a certain sense, of machines. They mechanically divide and systematize the
substance of sciences, without our active participation. That is why, once
created, they no longer belong to science, except as simple tools and cannot
imply for any of the acts they take part in, the responsibility of our science
that is thinking, invention, perpetual creation, selection and authentic human
value. Neither science in general, nor mathematics in particular are dead,
such as the blind formalism of the computer or of the algorithms, they are
thinking and life together.



Within the limits of this mathematical language, without identifying itself
to science, the algorithm is one of its essential factors.

This language has a grammar of its own, it has autonomous formal rules
and a semantic which is very meaningful for the mathematician who discov-
ers in it laws like those of specializing, repartition, radiation, analogy, which
add their effects to those of the science proper.

Such an understanding of the problems of science shows us how organic-
ally it is included among the disciplines constituted by human spiritual activity.

NOTES

1. I felt a deep emotion when reaching these passages of my discourse, professor Nicolae lorga,
who was not particularly interested in mathematics and neither in its philosophical aspects, left
the manuscript he was correcting somewhere at the end of the table I was standing at and talk-
ing, and started listening with such attention that I was touched. Note of the author.1



